profile picture

English Spanish




Infrared (IR) inspection is a fast and noninvasive means of monitoring and diagnosing the condition of buildings. An IR camera can instantly identify problem areas that can be immediately documented with full color thermal pictures the inspector can easily download into a thermal inspection report which clients and customers will easily comprehend. IR gives the home inspector a great new tool that not only saves time and money, but also helps to elevate him or her as a professional using state-of-the-art equipment.

How Infrared Thermography Works
Thermography enables us to see and measure heat. All materials on earth emit heat energy, in the infrared portion of the spectrum. Unfortunately, the unaided human eye cannot see in the infrared. Infrared images allow the camera user to see temperature anomalies that identify potential problems in buildings and their component electrical, mechanical, plumbing, and waterproofing systems.

Today's lightweight and rugged infrared cameras can not only see in real-time, but can also record infrared images and measure the temperatures of target objects quite accurately. Points of possible concern show up clearly as hot or cold in relation to their surroundings. Recorded thermal images can be easily inserted into reports, and widely distributed, greatly facilitating communications among trades, attorneys, and other professionals and serving as invaluable, rational, evidentiary data in cases involving controversy. 

Ways to use Thermography
Infrared cameras are being used in a variety of ways to detect problem areas in residential and commercial buildings:

  • Moisture intrusion and potential mold in walls and ceilings. IR thermal imaging is much faster, noninvasive, and provides evidentiary-quality, intuitively understandable data having a much higher degree of accuracy and reliability than other moisture detection technologies used to trace the source and scope of water damage, and thus potential mold in buildings. Once the IR camera identifies areas with thermal differences, a moisture meter can be used to confirm that they represent moisture.

  • Missing or damaged insulation. An IR camera can quickly and non-destructively detect areas of missing, moisture-laden or otherwise damaged insulation in walls, crawlspaces and attics or around doors, windows, electrical outlets and other access plates. All of these problems can increase a building's energy costs by allowing cold air to enter the building and heated air to escape in the winter, and the reverse in the warmer, summer months. IR can also identify poorly or un-insulated pipes, another source of costly heat loss.

  • Faulty electrical mechanical and HVAC systems and components. Infrared cameras are very effective at detecting overloaded circuits, faulty wiring, and loose electrical connections, which generate heat, and can pose serious fire hazards. IR can detect thin spots in furnace heat exchangers and flues, mechanical problems such as worn, under-lubricated pumps, motors, and bearings in fans, compressors, and furnaces, electrical faults, refrigerant leaks and blockages in HVAC components, another source of costly energy waste.

  • Leaking roofs. Roof leaks can cause costly damage to a building's contents and discomfort to its inhabitants. An infrared inspection can quickly identify missing or moisture-soaked insulation under a flat roof membrane where the insulation needs replacement, permitting the surgical repair of failed areas rather than the much more costly replacement of the entire roof.

  • Construction defects. The increased use of EIFS (Exterior Insulation and Finish Systems) and stone, stucco, brick veneers and siding as facades on residential as well as commercial buildings invites the possibility of water intrusion if they are not properly installed. IR can detect or verify moisture infiltration in these weatherproofing 'barrier' systems, usually the result of insufficient detailing such as inadequate or improperly applied flashing or sealants. In addition, IR can monitor and track moisture migration paths within the wall cavity.

  • Post-fire inspections. After fires, IR can quickly locate remnant hot spots, assuring the fire is completely extinguished and provide invaluable data for insurance companies' Cause and Origin investigations. The clear IR images of normally invisible diagnostic evidence can assist in the planning and execution of the restoration effort and in the settlement process.

  • Termites. Although considered cold-blooded creatures, termites are hosts to bacteria, which help break down and digest cellulose, the main ingredient of the wood they digest. The digestion process generates heat, and when large numbers of termites in nests congregate, a substantial amount of heat is concentrated in one area. As this heat moves through the walls or floor of a building, an IR camera can detect it on the surface.

In addition, infrared can be used to perform energy audits and surveys, indoor air quality investigations and plumbing and radiant floor heating inspections.


What is Infrared (IR) Testing?


IR testing refers to an inspection process utilizing thermography or IR cameras as a means to perform situational non-invasive, non-destructive testing or NDT. IR imaging goes far beyond what is seen by any inspectors' naked eye and works off of temperature signatures in the invisible IR spectrum of light. IR testing applications can be performed in a variety of situations to detect problems before they become much larger and costly issues. Some examples of infrared testing applications:


Building Diagnostics and Preventative Maintenance - Commercial and Residential IR testing can be used in a myriad of applications as a form of inspection by evaluating a variety of building components. By conducting a thorough evaluation of these component's temperature signatures during normal operating conditions, one can perform real time or periodic IR inspections to detect thermal differences from the norm in order to avoid costly repairs. This kind of preventative or predictive maintenance is critical to maintaining all types of structures.

Roofing - IR testing is used to detect water damage and leaks beneath the surface of the roofing system allowing the opportunity repair the specific section before it continues to spread. Localized spot or partial repair vs. entire roof system tear off and replacement saves our clients tens and hundreds of thousands of dollars per event. This makes any IR testing pay for itself in overall reduced end user costs.

Electrical - IR testing may be used as a means to detect potential wiring, circuit overload, or areas of unusually high electrical resistance, allowing electricians to repair or replace the components before failure, eliminating fire potential, costly downtime, or further damage to the electrical systems or downstream appliances.


Level l IR Thermography Certification

Level I certification is the first of three levels of IR certification. Level I IR thermographers are typically newer to IR thermographic diagnostics. This does not imply that they are entry-level inspectors or condition monitoring technicians, indeed many Level I professionals have years of experience in construction technology, building practices, and overseeing or maintaining complex systems. Level I thermographers generally follow a written test procedure to evaluate specific types of equipment in their facility. They can operate their infrared cameras and software and identify and measure thermal anomalies based on thermal patterns, comparisons with similar equipment, and their own experience.


I strongly encourage you to accompany me so that you may ask questions and gain a better understanding of the systems.

If you have any questions, or are interested in any other services, please contact me so we may discuss your specific needs.


Call today to schedule your IR Inspection appointment